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Abstract:  In this paper, a discrete version of the cheapest shop seekers algorithm is presented for solving the traveling 

salesman problem.  The cheapest shop seeker, a recently proposed nature-inspired algorithm utilized to solve the 

global optimization function. It is a population-based metaheuristic inspired by mimicking a group of shoppers 

cooperatively seeking for the cheapest shop for shopping and proved to be effective when investigated in 

continuous domain.  The performance of the discrete CSS algorithm is evaluated on some benchmark instances 

from TSPLIB. Experimental results show that the discrete version is found to be effective on small instances where 

it obtained optimum solution. Similarly, it had comparable performance on the large instance. 
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Introduction 

The cheapest shop seeker algorithm is a newly introduced 

population-based meta-heuristic algorithm meant for solving 

optimization problem in a continuous domain (Shola, 2016). It 

is a stochastic optimizer which is inspired by a group of 

shoppers cooperatively seeking for the cheapest shop for 

shopping. The success recorded by the CSS when applied to 

some benchmark functions in continuous domain motivated 

the idea of investigating its performance in discrete domain, 

more specifically to combinatorial optimization problems. A 

combinatorial optimization problem (COP) is a problem of 

finding a feasible solution that globally optimizes a given 

objective function in a discrete finite search space which 

expands exponentially as the  dimension (or  size) of the 

problem increases. COP is an important area of optimization 

to which many resource management problems belong. Such 

problem arises in finance, marketing, production, scheduling, 

inventory control, production, facility location, and in many 

engineering problems where an optimum design of a structure 

or product obtainable from the limited available resources, is 

targeted.  

Many methods for obtaining the exact solution to COPs have 

been proposed.  One such method is the branch and bound 

where feasible solutions are organized in a tree-like structure 

and a branch is made at each node to explore a path only as 

far as the bound on the optimum solution (obtained elsewhere) 

is not exceeded. A backtrack is made to explore another path 

whenever a bound is exceeded on a path. Few of the studies 

that employed usage of brand and bound can be found in 

(Ignall and Scharge 1965; Potts and VanWassenhove 1985; 

Gendreau et al., 1998; Ronconi, 2005). The cutting plane 

methods in integer programming have also been used to find 

the exact solutions to some COPs (Gomory, 1958, 1960). The 

method iteratively performs the following: 

(a) Relaxes the linear programming problem (LPP) by 

dropping the constraint that the variables be integer 

type and solve the resulting the LPP, to obtain an 

optimum solution say x*. 

(b) Returns x* as  solution if it is an integer solution  

otherwise  find a cutting  (hyper) plane   that cuts 

off a part of the  search space in  a way that the 

remaining part contains all  the integer feasible 

solutions of the original search space but not x*. 

Solve the LPP in this remaining search space for the 

new optimum solution x*. Repeat step (b). 

Other exact methods which have been employed for the COPs 

include dynamic programming in which the problem is 

redefined in terms of a set of problems of the same type as the 

original problem but with each having a smaller search space 

than the original space (Held  and  Karp 1962), constraint 

satisfaction techniques where the COP is reformulated as a 

constraint satisfaction problem (Brailsford et al., 1999) and 

some other integer programming techniques like relaxation 

techniques and decomposition techniques  (Benders, 1962).  

COPs have also been formulated as graph problems in which 

some graph search algorithms (such as A* search) applied to 

solve them (Kaya and Uçar, 2009).  The exact methods are, 

however, not suitable for solving a large-sized COPs due to 

the exponential explosion of the population of their feasible 

solutions. The approximate solutions (or just good solutions) 

are all that can be obtained for the COPs and many 

approximate methods have been devised and applied for such 

purpose. The two classical examples of approximate methods 

are local search-based and population-based techniques.  

 The local search-based optimizer is a  single solution local 

improvement heuristic (technique) that iteratively moves from 

a initial feasible solution to a neighbouring one  based on a  

given neighbourhood function ,2: SSN   that defines the 

set of feasible solutions SxN )(  which are neighbours of 

each feasible solution x  in the search space .S   The 

effectiveness of a local search depends on the nature of the 

neighbourhood function (i.e. the size of the neighbourhood it 

generates and the coverage of the feasible solutions in the 

search space), the speed of the method employed  for 

searching a neighbourhood (especially if  large in size)  and 

the rule for identifying a neighbour to replace the current 

solution. For instance, the larger the neighbourhood the better 

may be the solution produces but with more time taken to 

search the neighbourhood to identify a neighbour to select. 

The choice of a neighbour also has impact on the computing 

time: a local search-based method such as hill climbing (that 

selects just a neighbour better than the current solution) may 

take less time than the steepest descent (that selects the best 

neighbour as all the neighbours of the current solution may 

need be examined to determine the best especially in a 

discrete space where gradient computation is not valid). Few 

studies that have applied local search-based to the COPs can 

be found in (Thompson, 1988; Crauwels, 1998).   The 

problem with the local search-based methods is its inability to 

escape from local optimum which makes it often returns a 

local optimum solution. To address this point, the basic local 

search-based has been improved upon and along many 

directions. A variable neighbourhood search is a kind of 

improved local search that employs a set of neighbourhood 
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structures and switches from one to another as the search 

progresses. Many applications of VNS to numerous COPs can 

be found in (Divsalar, 2013; Shaw, 1998). The large 

neighbourhood works by alternatively destroying and 

rebuilding a solution using an extensive set of destroy and 

repair heuristics. In adaptive large neighbourhood, the 

frequency usage of the different destroys and repair heuristics 

are made a function of their previous performance (Ropke and 

Pisinger, 2006).   The local search-based metaheuristic on the 

other hand employs a mechanism to reduce its likelihood of 

getting stuck in a local optimum.  Different methods of this 

kind that have been used to solve many COPs are: (i) 

simulated annealing which adopts some sort of random move 

to avoid being trapped in a local optimum (Kirkpatrick, 1983; 

Matsuo, 1989), (ii) tabu search which keeps memory of past 

movement and uses this information to identify and escape 

from local optimum (Glover and Laguna, 1997; Gendreau et 

al., 1994; Gendreau et al., 2006).  The population-based 

technique starts with provisional solutions called population.  

At each iteration, these solutions are perturbed using the basic 

components to generate new ones with anticipation that 

quality will be higher than that of the candidate solutions. 

Some population-based employed to tackle the COPs are 

genetic algorithm that uses evolutionary principle of the 

survival of the fittest as strategy and some form of 

randomness (Manar and Shameen, 2011; Takeshi and Ryohei, 

1995).  The issue with these methods is the computing time 

required to produce the good solutions. Similarly, few 

examples of prominent nature-inspired population-based 

metaheuristics originally devised for continuous optimization 

problems that have adapted to tackle different COPs are 

particle swarm optimization (PSO) developed by Kennedy 

and Eberhart (1995) and utilized for the COPs like  task 

assignment (Salman, 2003), classification (Sousa, 2004), 

orienteering problem (Shanthi and Sarah, 2011), and flowshop 

scheduling problems (Liao, 2007) and binary discrete version 

of the PSO is proposed by Kennedy and Eberhart (1997).  On 

the other hand, ant colony optimization (ACO) is originally 

developed to tackle discrete optimization problems by (Dorigo 

and Gambardella, 1997). It has been used to tackle many 

COPs (Besten et al., 2000; Blum and Sampels, 2004). A brief 

review of nature inspired algorithm can be found in (Fister et 

al., 2013).  In another development, other studies that 

employed the usage hybrid systems to solve many COPs 

especially timetabling problem could be found in (Bolaji et 

al., 2014).   In hybrid system, two or more optimization 

techniques are combined to solve an optimization problem. 

For instance, mat-heuristics combines a metaheuristics and 

integer programming techniques (Pirkwieser et al., 2008, 

Mezmaz et al., 2007) while memetic technique involves the 

combination of two or more metaheuristics such as local 

search-based and population-based approaches together 

(Bouly et al., 2008; Burke et al., 1996; Sonawane and Leena, 

2014; Lin et al., 2009). Literatures have also reported some 

studies that combined metaheuristics with some machine 

learning techniques such as neural network, fuzzy logic to 

tackle some optimization problems (Kwon and Moon, 2003).  

Note that the focus of this paper is to investigate the 

performance of the proposed Discrete CSS on traveling 

salesman problem which is one of the classical examples of 

the combinatorial optimization problems  

The paper is organized in the following way. Section 1 

presents the introduction while section 2 discusses the 

classical CSS algorithm.  Section 3 presents the framework of 

the discrete CSS and experimental results is given in section 

4.  Finally, Section 5 provides conclusion and future research 

directions. 

The cheapest shop seeker Algorithm 

The cheapest shop a seeker (CSS) is a population-based 

stochastic algorithm simulating a group of shoppers 

cooperatively searches for the cheapest shop to purchase their 

goods. During the search process, the CSS engages a 

collection of agents which explore the search space in a 

cooperative manner in order to obtained solutions to a given 

optimization problem. The success of the CSS algorithm 

depends on the capability of the agent in the group to 

memorize the past experiences (i.e. memorized the best 

position). Each member of the population cooperatively 

shared experience in order to achieved common objectives. 

Each group member competes to survive in the population by 

searching for the position which could improve the global best 

position. Similarly, each member of the group has the ability 

to explore the search independently to improve its own current 

position.  

In CSS algorithm, the solution space is initialized with shops 

available for shopping where each shop represents a candidate 

solution to the optimization problem. Furthermore, there is a 

specified number of shoppers cooperatively searching for the 

cheapest shop among the shops. Then shoppers interact with 

each other by sharing their experience where the information 

received from others and personal experience could be 

utilized to determine the next shop to visit. A shopper close or 

near the current cheapest shop could sometimes disregard its 

personal experience or available information in order to 

explore search space for the new positions with aims of 

obtaining a better position than the current global position. 

Algorithm 1 shows the pseudocoode of the cheapest shop 

seeker as proposed for solving continuous optimization 

problems (Shola, 2016). 

Algorithm 1: The pseudocode for the cheapest shop seeker 

Parameters: 

P: number of shops in the populations 

N: number of iterations  

 𝑐0,  𝑐1: positive constants  usually in  

the range [2,4].    

Dim: the dimension of the problem. 

rand(): generates a random number      

between [0,1] 

𝑥𝑖
𝑘: vector denoting the position of  

particlei at time k (i.e. at kth 

iteration)    

𝐺𝐵𝑘: vector denoting the globally  

best position (of all the  particles) attained up to time k.  

𝐿𝐵𝑖
𝑘:vector denoting the best position up to time k attained  by 

particle i   

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑢,   𝑣):the geometric  distance  

of position  𝑣  from  𝑢 

minx =(minx1, minx1, ….., minxdim)   and     

maxx =(maxx1, maxx1, ….., maxxdim)   

where minxj andmaxxj ( j=1,2..,dim)  are respectively the  

lower  and upper bounds  for  the value of  component  j  of 

𝑥𝑖
𝑘 

fitValue(z ):   the fitness  value  of  position   z.  

𝜖  :the bound on the distance of the  

shop from the current global position  below which  

particles generate their position randomly. 

Initialization step: 

(a) INITIALIZE  randomly  the positions  𝑥𝑖
(0)  of all the  

shops in the population: 

set,,2,1for Ni 
 

)minmax(()min
)0(

xxrandxx i   

(b) Ni ,,2,1for   

COMPUTE the fitness value 
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)(fitValue 0

ii xf  , of shop’s position
0

ix  

(c) Set the global best position
0

GB to  the  shop position   

with   the best fitness value 

 

Iterative step:  

do21for ,N,,k  the following looping 

 do21for ,P,,i  the following 

    {   (i)UPDATE 
k

ix   to obtain
1k

ix
, 

      (a) )(**()rand 0

k

i

kk

i xGBcxv 
 

 1 

      (b)  )(*1

k

i

kk

i xLBcxDu    2 

With any component of  𝑢   or  𝑣   out of interval bound 

generated randomly as in (a) of   initialization step 

   (c)  thenuvif ))(fitValue)(fitValue(   

set vx
k

i 
1

 

else    set ux
k

i 
1

 

    (d) thenGBxif
kk

i )),(distance(
1




 

)minmax(()min
)1(

xxrandxx
k

i 


 

 

Update step:   

 Update global best position GB to obtain  ,
1k

GB  and the 

fitness value of ,
k

GB  

 thenxGBif
k

i

k
))(fitValue)(fitValue(

1
  

  set
11 

 k

i

k

i xGB  

else 

set
k

i

k

i GBGB 
1

 

Output the current global best position,  ,
N

GB  and its 

fitness value, )(fitValue
N

GB
.
 

 

The proposed discrete CSS algorithm 

In this section, a novel discrete cheapest shop seeker 

algorithm (DCSS) is proposed for the COPs especially the 

traveling salesman problem.  The continuous nature of the 

original CSS is adapted in order to handle the discrete search 

space of the TSP.  The definition of the adaptation when 

utilized to tackle the TSP is provided as follows: 

 





 


otherwiseq

crandifp
rqp

j

j )(
 

with the result  repaired where necessary

  valuesfitness of in terms, ofbetter 

),(bestOf

qp

qpqp















otherwise

)(rand  randomly  chosen entries

 twoswappingbyobtainedofmutation

p

cifp

p

rpc
for 

any two vectors ),,,,( 21 Npppp 

),,,( 21 Nqqqq   the  shop position updating equations 

(1) and (2)    is converted  to  

)(1

1 k

i

k

i

k

i

k

i xLBcxDu 


 (3) 

)(2

1 k

i

k

i

k

i

k

i xGBcxDv 


   (4)
 

),,,(bestOf
111 


kkk

vux   (5) 

Where 
kkk

wvu ,, are repaired when necessary before 

accepting the best and in a case where 
1k

x  equals
k

GB , a 

feasible solution is randomly generated for 
1k

x s. 

 

The procedure of DCSS algorithm is given as 

Initialization step: 

(a) INITIALIZE randomly the positions 
)0(

x  of all the 

shops in the population: 

set,,2,1for Ni 
 

)minmax(()min
)0(

xxrandxx i 
 

(b)  Ni ,,2,1for   

COMPUTE the fitness value 

)(fitValue 0

ii xf  , of shop’s position
0

ix
 

(c) Set the global best position
0

GB to the shop position   with   

the best fitness value 

Iterative step:  

do21for ,N,,k  the following looping 

 do21for ,P,,i  the following 

    {   (i)UPDATE 
k

ix   to obtain
1k

ix
, 

           (a) )(][2

k

i

k

i

k

i xxGBcv 
 

           (b)  )(][1

k

i

k

i

k

i xxLBcu   

           (c)   ),,(bestOf
1..

vuxx
kk

i 


 

 in terms of fitness value     

(d) thenGBxif kk

i
)),(equal(

1..
 

𝑥𝑖
(𝑘+1) =generate randomly  

andrepair where necessary. 

      (ii) UPDATE: global best position GB  to obtain 

,
1k

GB and the fitness value of ,
k

GB  

 thenxGBif
k

i

k
))(fitValue)(fitValue(

1
  

  set
11 

 k

i

k

i xGB  

else 

set
k

i

k

i GBGB 
1

 

} 

Output the current global best position,  ,
N

GB  and its 

fitness value, )(fitValue
N

GB
.
 

 

Experimental Results & Discussions 

Here the algorithm is tested on traveling salesman problem 

(TSP). The choice of travelling salesman problem, as a test 
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case, is made due to the fact that the problem is one of the 

most significant problems in combinatorial optimization 

(Schrijver, 2005) and many permutation problems such as 

scheduling and routing might be case as a traveling salesman 

problem.  In fact TSP has become a standard test case for 

discrete optimization method. The travelling salesman 

problem is the problem of finding the shortest route (path) a 

salesman would take to visit a given number of cities with no 

city visited more than one time. The discrete versions of the 

algorithm presented below were tested on data instances from 

the TSPLIB and some of the results presented below in the 

table. 

 

Table 1:Experimental results of the proposed method on 

TSP instances from TSPLIB 
 

 

As shown in Table 1, it can be deduced that the algorithm 

could able to obtain the exact solution in the problem 

instances of small dimensions (see instances GR17, FRI26 

and bays29 in Table 1). Similarly, the proposed algorithm 

obtained comparable results in the large instance of the TSP 

dataset. However, when compared with the solution obtained 

by the nearest neighbour method as one of the initial solutions 

for gr120 in the algorithm improved its result from 

9028.000000 to 8271 towards the optimum solution 6942. 

 

Conclusion 
In this work the cheapest shop optimization technique 

presented in [1] for continuous domain is adapted for discrete 

optimization problem. The performance of algorithm is tested 

on the traveling salesman problem benchmark instances found 

in TSPLIB. The result of the experiment shows that the 

proposed discrete cheapest seeker shopping obtained optimal 

solution in four instances of the dataset and had a comparable 

performance in the remaining instance. The algorithm seems 

to be a promising one for discrete optimization from the 

result. The performance of the proposed method could further 

investigated on other instances of the TSPLIB in order to 

justify its performance. Therefore, our future work will focus 

on improving the technique by integrating with components of 

other metaheuristic algorithms.  
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